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The diffraction of surface waves by plane vertical obstacles 
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(Received 24 September 1976) 

A short-wave asymptotic solution is derived for the problem of the diffraction of 
a surface wave train, in deep water, by a two-dimensional obstacle with plane vertical 
sides near its intersection with the free surface. Using matched asymptotic approxima- 
tions, a detailed analysis is presented for the special case of a rectangular scatterer of 
depth a and width 2b, and the solution is then generalized to deal with a wider class of 
geometries. It is found that the transmission coefficient, at  small wavelengths, has an 
exponentially small factor that depends on the depths of the plane sides, and an 
algebraically small factor that depends on the corner angles. 

1. Introduction and formulation 
The problem of scattering of short surface waves on deep water by large obstacles 

has received considerable attention in the literature and has been tackled by a wide 
variety of methods. In the short-wave limit it has been found that the transmission 
and radiation properties depend crucially on the details of the obstacle geometry, 
particularly near its intersection with the free surface. The present work deals with 
the two-dimensional situation where both sides of the scatterer are plane and vertical 
near the surface and uses the method of matched expansions. 

Earlier work has developed the method for geometries that meet the surface 
obliquely (Alker 1976) and curved obstacles that meet the surface at  right angles 
(Leppington 1973). In  the short-wave limit where the wavelength 2ns is small com- 
pared with a characteristic obstacle dimension a, the earlier work has been based on 
the idea of dividing the fluid region into two overlapping parts. In  the outer region 
(many wavelengths from the surface) the free-surface condition is simplified by 
formally letting E+ 0 there. In  the inner regions (at distances small compared with a 
from the intersection points) the actual scattering geometry is replaced by the local 
geometry, which leads to relatively simple wedge problems in the presence of a free 
surface. The wave-free parts of inner and outer approximations are then matched to 
complete the asymptotic solution at  all points. 

For the class of geometries that are locally plane and vertical near the free surface, 
the procedure outlined above does not succeed without some modification, and this 
is the problem investigated here. Essentially the difficulty is that the local inner field 
near the front intersection point is that of a totally reflected wave, with no residual 
wave-free term to match with an outer solution. 

An exact solution is available (Ursell 1947) for one particular geometry of this class, 
namely that of a vertical barrier of zero thickness and finite depth. For this problem 
the transmission coefficient is exponentially small and the reflexion coefficient differs 
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FIGURE 1. The rectangular cross-section and the co-ordinate systems. 

from unity by an exponentially small term; similar properties are obviously to be 
expected for the more general geometries considered here. This indicates the futility 
of trying asymptotic expansions in increasing powers of B near the intersection points, 
for any successful attack must account for the possibility of exponentially small 
scaling factors. 

The key to further progress is suggested by Ursell’s exact solution, which can be 
shown to exhibit critical behaviour near the lower tip, where the potential is found to 
change rapidly on a (small) wavelength scale. This suggests the presence of an inner 
region near the barrier tip or, more generally, near the point (or points) where the 
geometry changes from being plane and vertical. 

For definiteness, a detailed analysis is first given (in $5 2-4) for the prototype problem 
of a rectangular scatterer of depth a and breadth 2b, and the solution is generalized 
in $5. 

Cartesian co-ordinates (z, y) are chosen such that the free surface is at  y = 0 and 
the obstacle boundary is given by (z = 0, y < a),  (0 < z < 2b, Y = a) ,  (Z = 2b, y < a)  
as is shown in figure I. The velocity potential Re {$(z, y) exp ( - iwt)} is taken to be 
simple harmonic in time with angular frequency w ,  and satisfies the two-dimensional 
Laplace equation for an incompressible fluid. On the free surface $ satisfies the 
linearized boundary condition 

$++a$/ay = 0, (1.1) 

where E = g/w2 and g is the acceleration due to gravity. The incident wave train has 
the potential 

$i exp ( - iwt) = exp { ( i ~  - y)/e) exp ( - iot )  (1.2) 

and the time factor will henceforth be suppressed. Formula (1.2) shows that the wave- 
length is 2 m .  

On the fixed scatterer the normal velocity vanishes, thus 

a$/& = 0, (1.3) 

where n is the outward normal. Uniqueness requires a further edge condition 

ra+/ar+o as r+O, (1.4) 

where r is the distance from either corner, and a radiation condition at infinity to 
ensure outgoing waves. Thus 

(1.5) 
$ -Fexp{(iz-y)/e} as Z+ +co, 

$-$$ N .%?exp{(-ix-y)/E} as X+ -00, 
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where the transmission and reflexion coefficients 9 and 9 are to be found. (Some 
authors refer to the real quantities /TI2 and as the transmission and reflexion 
coefficients. ) 

In  the short-wave limit it  is expected that the incident wave will be almost totally 
reflected, and with this in mind it is convenient to write $ in the form 

where the leading term is the potential scattered by an injnite plane vertical wall. 

y > a, and is specified by the conditions 
The residual function q5 clearly has a discontinuity across the half-plane x = 0, 

(a2/az2 + a2/ay2) # = 0 in the fluid, 

q5 + 8 a#/ay = 0 on the free surface, 

a#/an = 0 on the scatterer, 

[#I = 2 exp ( - y/e), [a#/aXl = 0, y > a, 

where [#] denotes the discontinuity #(0 + , y) - #(0 - , y). 
In  addition # satisfies edge conditions like (1 .4)  and the radiation conditions 

(1.8) I Texp{(ix-y)/e} as x+ +m, 
4 ((a- i)exp{(-iz-y)/s} as x-+ -m. 

Numerical results have been derived for the rectangular scatterer by Mei & Black 
(1969) for finite depth and various values of the geometrical parameters. The wave- 
length is comparable with the length a, so that there is little overlap with the asymp- 
totic results derived here. 

2. Outer approximation 
The outer region consists of the whole fluid domain except for a small area within 

a few (small) wavelengths from the edge (0, a )  and a thin layer close to the free surface. 
An asymptotic approximation is sought by simply setting 8 = 0 in the surface con- 
dition of formulae (1.7), so that e does not appear explicitly in the specifications. 
Thus we write 

where k and a(€) denote a constant and a scale factor to be determined. 
The function 4, is harmonic and subject to the boundary conditions 

# k W # , ( X , Y )  a5 B + O ,  (2.1) 

and 
#* = 0 on the free surface 

a#,/an = 0 on the scatterer. 

Since the surface wave trains are absent in the outer region the condition at infinity is 
simply that 

#,-+ 0 at infinity. ( 2 . 4 )  

Now since the total potential $ is continuous, it  follows from (1.7) that # has a jump 
discontinuity of magnitude 2e-Ylc across the half-plane x = 0, y > a. It transpires, 

20-2 
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however, that the scale factor a(€) of formula (2 .1 )  has the value s* exp ( -a/€),  and the 
discontinuity in q5 is therefore of negligible magnitude in the outer region where 
y -a  9 e .  Thus the leading outer potential q50 is regular across the hslf-plane x = 0, 
y > a. 

The problem for q50 is evidently a homogeneous one, and therefore has a non-trivial 
solution only if it  is singular at some point (or points). Since the original potential is 
regular everywhere it follows that the singular point must be outside the outer region 
and is therefore on the free surface or else at one (or both) of the edges (0,  a)  or (2b, a). 
An ‘inner ’ approximation then plays the role of smoothing out the singular behaviour, 
the transition from one regime to the other being accomplished by an appropriate 
matching argument. 

It is found that the singular point for q50 can occur only at the edge (0, a )  that faces 
the incoming wave; other singularities cannot be matched to any inner approximations. 
On account of the boundary condition (2 .3 ) ,  we can obviously anticipate that the 
singularity will have the form 

$,-r-*COS$8 as r + ~  (2.5) 

in the polar co-ordinate system shown in figure 1 .  
Any multiplicative constant factor appropriate to the outer potential (2 .1)  can be 

accommodated by the scaling constant k. 
A t  this stage we should not rule out the possibility of a higher-order singularity, 

for example $50 - r-g cos $0. Such a singularity is rejected on the grounds that it would 
not match with the inner solution near the edge [cf. formula (3 .22) ] .  

The conditions (2 .2) - (2 .5)  completely specify q50, though in practice the function 
can be determined only implicitly using a Schwarz-Christoffel transformation in- 
volving elliptic integrals (see the appendix). For general values of the parameter b/u 
the solution is complicated, but is simplified if b/a  is either large or small. The function 
q50(z,y) can, however, be regarded as being known in principle. In  particular, its 
behaviour near the other edge (2b, a )  has the form 

$50 - P + q d  cos $4, (2.6) 

where (r l ,  8,) are polar co-ordinates based at the edge (2b, a )  (figure 1 ) ;  the constants 
p and q depend on the geometrical parameter b/a ,  and are known in principle. 

3. Inner approximation 
In  the vicinity of the edge (0 ,  a )  we seek an inner solution that will smooth out the 

singularity that appears in the outer approximation. The inner region is taken as the 
domain 

r < min (a, b ) ,  (3.11 

so that the local geometry appears simply as a right-angled wedge, and we expect the 
potential there to be relatively insensitive to the precise details of the geometry away 
from the edge. Inner co-ordinates based on the wavelength scale are defined by the 
transformation 

2 = E X ,  y = a+eY,  q5(x, y) = @ ( X ,  Y ) .  (3.2) 
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To determine the overall scale of the function @, note that the only inhomogeneous 
condition in the specifications (1.7) is the fourth formula, which becomes 

[ @ I  = 2exp(- Y-ale) ,  Y > 0, 

where [@I means @ ( O +  , Y )  - @(O - , Y ) .  This suggests that we write 

@ - exp ( - a / € )  @,(X, Y )  as E+O,  (3.3) 

where @, is harmonic. Substitution into the boundary conditions (1.7) leads to the 
requirements 

a@,/aY = 0, Y = 0, x > 0, (3.4) 

ao,/ax = 0, x = 0, Y < 0, (3.5) 

[a@,/ax] 5: 0, Y > 0, 

Y > 0. [@,I = 2e-Y, 

The edge condition at  (0 ,O) is that 

a@,/aR = o(R-~)  as R+O, (3.8) 

where R = (X2-t- Y2)4 = r/s (3.9) 

is a polar co-ordinate based on the inner variables. A more general condition than (3.8), 
namely that Ra@,/aR+O, leads to the specific behaviour (3.8), which is taken here 
at the outset. 

Finally we need a boundary condition at  infinity, and this is provided by a matching 
argument. The inner solution [r 4 min (a, b)] and the outer approximation (r E )  

are both required to hold in the common region E < r < min (a, b ) ,  where r-f 0 and 
R+ co simultaneously. This overlap clearly requires that E < min (a, b)  and this is 
certainly the case if we consider the geometrical parameters a and b as fixed, and let 
E+ 0. With this understanding, we have 

@(R-+oo) - $(r+O) (3.10) 

as our matching requirement. 
Now the outer approximation (2.1), together with (2.5), shows that 

$ N ka(E) r-3 cos $8 

= ka(e) E-fR-3 cos $0, 

It follows a t  once from (3.3) that the scale function a(€) is given by 

a(€) = €8 exp ( - a /€ )  (3.11) 

and that the far-field behaviour of 0, is given by 

@,, N kR-% cos $0 as R+ 00, (3.12) 
where k has to be found. 

The harmonic function @, is uniquely determined by the conditions (3.4)-(3.8) 
and (3.12). Its overall scale is determined by the inhomogeneous term (3.7) so the 
constant k of (3.12) cannot be prescribed arbitrarily. The solution for @, that follows 
will show that k must take a specific value [given by (3.23)] and the outer approxima- 
tion (2.1) is then complete. 
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Calculation of @, 

The function @, satisfies the Laplace equation 

(3.13) 

together with the conditions (3.4)-(3.8) and (3.12), where (R, 8) are polar co-ordinates. 
Since (3.13) is homogeneous in R, it is natural to seek a solution by Mellin transforma- 
tion. Thus we define the transform 

@,(s, 0) = som @,(R, 8) R8-l dR. (3.14) 

Taking note of the limiting forms of @, given by (3.8) and (3.12) for small and large 

O < R e s < #  (3.15) 

A 

values of R,  it  is seen that the integral (3.14) converges if 

and that the Bromwich inversion integral for @, is 

(3.16) 

where the real number cr lies in the range (3.15). 
Under this transformation, the Laplace equation (3.13) becomes 

( a y e 2  + 92) 8,(s, e) = 0, (3.17) 

and the boundary conditions (3.4)-(4.7) require that 

a8,/a8 = 0 when 8 = 0, gn, (3.18) 

with a$,/aO continuous a t  8 = n, and 
h A 

Q,(~, n+ 0) - a,($, - 0) = 2 r ( 4 ,  (3.19) 

where r(s) is the gamma function. The solution is found to be 

- 2r(s)  sin (&T) coss8, 0 < 8 < n, 
W(s) sinsn cos s(8 - Qn), n < 8 < tn. 

A 

sin (gsn) @,(s, 8) = 

Taking the range 0 < 0 < n, for example, the solution for @,, is 

and we need its limiting behaviour at  large R, in order to confirm 
(3.12) and to calculate k. 

(3.21) 

the predicted form 

The integrand of (3.21) has poles at s = - n and also at s = 2m k 8, where n is 
a non-negative integer and m is any integer. An asymptotic expansion for large R is 
found by deforming the vertical integration path around successive poles on the 
positive real axis. In  particular, the leading term arises from the pole at s = 8, thus 

@,(R, e) - ( 2 1 ~ )  3-413) R-8 cos 88, (3.22) 
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which is of the predicted form (3.12). A similar calculation for the range n < 8 <.$T 
leads to the same asymptotic form for <Po(& O ) ,  and a comparison of (3.22) and (3.12) 
shows that 

k = - (2/n) 3-*r(3). 

Our matched solution is now complete to leading order. 

R-1(a@o/a8) evaluated at  8 = n. Thus from (3.20) 
The velocity distribution a<Po/aX on the half-plane X 

3 ( 0 ,  Y )  = -- u+im sr(s) sinsnsin (&ST) 
ax sin (gsn) 

(3.23) 

= 0, Y > 0 is given by 

Y-s-l ds (3.24) 

for Y > 0, a result that is used in $4.  The integrand in (3.24) has no pole at  s = 0 and 
the integration path may be shifted such that - 8 < (T < 0. 

4. Transmission and reflexion coefficients 
The analysis of $42 and 3 gives the leading term for the potential throughout the 

whole fluid region. Apart from the totally reflected wave term (1.6), the residual 
potential has been found to order d e x p  ( -a le )  in the outer region and to order 
exp ( -a /€ )  in the inner region near (0, a).  To this leading order the incident wave is 
totally reflected, thus W - 1 a n d y  N 0. 

In  order to improve these crude approximations, from our asympt.otic solution 
for 4, Green’s theorem is used to express 9- and 9 in terms of the velocity dist,ributions 
on the respective half-planes x = 2b, y 2 a and x = 0, y 2 a. The fundamental Green’s 
function of the problem is given by 

iIx-x’I-(y+y’) 
G(x, y; x’, y’) = -iexp 

(see John 1950, for example). This function satisfies 

(a2/ax2 + a2/ay2) G = s(x - z’) s(y - 9’1, 

where S is the Dirac delta function, and the free-surface condition (1 .1)  and the radia- 
tion condition at infinity. 

It is obvious that the function G(x, y; X I ,  y’) + G(x, y; 4b -x‘, y‘) has the additional 
property of having zero x derivative on the plane x = 2b; thus on applying Green’s 
formula to this function and the potential #(x, y), in the domain x 2 2b, y 2 0, we are 
led to the identity 

The integration runs from a to co since aq5/ax is zero for y < a, x = 2b. 
In  particular, when x’+cc the function G can be replaced by the first (surface 

wave) term of (4.1). Thus from (4.1), (4.2) and (1.8), the transmission coefficientr is 
given exactly by 

.Y = - 2i exp ( - 2ib/s) (2b, y) exp ( - y/e) dy, (4.3) 
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which is valid for all values of the wavelength and the geometrical parameters 
a and b. 

Under our short-wave approximation of $52 and 3, the velocity distribution in (4.3) 
can be replaced by the estimate (2.1). Furthermore, the exponential factor in the 
integrand of (4.3) ensures that the leading contribution to the integral comes from the 
vicinity of y = a, by Watson’s lemma. This means that we may use the edge behaviour 
(2.6) for q50, to get 

5 N - 2ika(e) pexp ( - 2ib/c) 3 t ( y  - a)-* exp ( - y/e)  dy, IuW 
and on performing the integration and using formulae (3.23) and (3.1 1)  for k and a(€), 
we find 

Y N (4i/3n-){r(g))2q~4exp{-~(a+ib)/~}. (4.41 

The constant q depends on the ratio a/b and is defined implicitly by (2.6). It is shown 
in the appendix that q.can be given explicitly for three special cases. Thus if the barrier 
is thin, so that b < a, then q N &3n/4b)$, so that 

5 N &i($r)*{(r($)}2 (s/b)bexp{ -2(a+ib)/e}. (4.5) 

Note that this value of Y for a thin barrier is no€ the same as that obtained by Ursell 
for a barrier of zero thickness (b = 0). There is no contradiction here, however, since 
implicit in the present work is the assumption that the wavelength is small compared 
with the other length scales, so that the constraint E < b limits the validity of our 
result. The case where b is of order E ,  or less, would require separate treatment. 

a, then formula (A 1 1 )  for q can be used in 
conjunction with (4.4) to show that 

If the barrier is a long flat one, with b 

5 N ($i/r) (an-)* {r(g)}2 (&/baf) exp { - Z(a + ib)/e}. 

F N in-{r($)}2 {r(a)}-Q (3~/2a)% exp { - 2( 1 + i) ale}. 

(4.6) 

Finally, when the scatterer is a half-square, whence b = a, formulae (A 9) and (4.4) 
give the result 

(4.7) 

A similar analysis leads to an estimate for the reflexion constant 9. Green’s formula, 
applied to #(x, y)  and G ( x ,  y; x;’, y’) + G(x, y; -x’, y’) in the region x < 0, y 2 0, leads 
to the identitv 

whence 9- 1 = 2i laW (0, y) exp ( -  y/e) dy. (4.8) 

In  this case the integration path contains points of both the outer and the inner 
region, but the main contribution again arises from the neighbourhood of the point 
y = a. It is found then that the leading term is obtained by using the inner approxima- 
tion (3.3) and (3.24), to get 

9 - 1  N 2iexp(-2a/e)Jm%(0, Y)e-YdY 
0 ax 

= - 4i3-8 exp ( - 2a/e) 

on using the expression (3.24) and changing the order of integration. 

(4.9) 
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FIGURE 2. The cross-sectional profile and the co-ordinate systems. 

Note that this estimate is independent of the outer solution, and in particular is 
insensitive to the breadth parameter b. This length scale would, of course, enter a t  
higher-order approximations. It is worthy of note that 9- 1 is imaginary to this 
leading order, this being consistent with (4.4) and the overall energy requirement 
/TI2+ 1912 = 1; this feature arises in any such problem when 191 $ ITl. 

5. Generalization of results 
The method of the previous sections can readily be generalized to deal with a much 

wider class of scattering geometries, with plane vertical sides of depths a and a,, and 
corner angles n/h and n/h,, with 4 6 A, A, < 1 (figure 2) .  The section y = y(x) between 
the two corners (0, a )  and (2b,a,) is assumed only to be positive, continuous and to be 
contained within the planes x = 0 and x = 2b. There is no uniqueness theorem for this 
configuration, but our approximate solution is uniquely determined. The case h = 1, 
or A, = 1, needs a slightly modified treatment and will not be included here. 

Proceeding as before, the incident and totally reflected waves are subtracted out 
by defining the residual potential q5 of (1.6). 

Outer solution 

An outer approximation for 4, valid except near the edge (0, a) ,  is again expressed as 

q5 N ka(e)q5, as e+O, (5.1) 

where q5, is harmonic and vanishes on the free surface and a t  infinity, having zero 
normal derivative on the scatterer. By analogy with the edge condition (2.5)) the 
function q5, now has the singular edge behaviour 

q5, N r-AcoshO as r+O, (5.2) 

in the co-ordinate system of figure 2. This isobviously consistent with the requirement 
of vanishing normal derivative, and reduces to  the previous value [formula (2.5)] 
for a corner of angle &r, with h = 3. 

In  principle the limit potential q50 can be regarded as known, and has the anticipated 
behaviour 

q5, - p + qr$ cos A, O1 (5.3) 

near the other edge (2b, a,), of angle n/A,. 
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Inner solution 

Defining inner variables (3.2) as before, the inner approximation is written as 

@ N exp (-ale) Q0(X,  Y )  as e-+ 0, (5.4) 

where a0 has to be harmonic in the wedge 0 < 8 < n/h, with zero normal derivative on 
the sides 8 = 0 and 8 = n/h; it is subject to the discontinuity conditions (3.6) and (3.7) 
and an edge condition at R = 0. 

Matching @(R+ 00) with (s(r+ 0) shows that 

a0 N kR-hcosh8 as R - + a  (5.5) 

(5.6) 

and that the scaling function ~ ( e )  of formula (5.1) is 

a(€) = eh exp ( - (a/€). 

A solution for <Do can again be effected by Mellin transformation. It is found that 

) (5.7) 
- 2I?(s) sin [sn( 1 - h)/h] cos so, o < 0 < n, 
2I '(s)sinsn~0~~(8--n/h),  7~ < 8 < n/h, 

sin (sn/h) O0(s, 8) = 

and Q0(R, 8 )  is given by the inversion formula (3.16) with 0 < CT < A. The pole contri- 
bution at s = h gives the leading term for large R, and this has the form (5 .5)  with 

k = - (2h/n) I'(A) sinhn. (5.8) 

The values (5.6) and (5.8) for a and k complete the outer solution (5.1). 

Transmission coeficient 

An integral expression for the transmission constant LT is given by (4.3), with the 
lower limit replaced by a,, and the leading term comes from the vicinity of the point 
y = a,. Use of the estimates (5.1) and (5.3) then leads to the result 

LT N (4i/n) qAh, sin An sin h,nI'(h) I&) eh+A1 exp { - (a +al + 2ib)/s}. (5.9) 

This clearly reduces to the previous value (4.4) when h = A, = 8 and a, = a. 
The exponential factor exp { - (a, +a)/€} depends only on the depths a and a, of 

the vertical sides, while the algebraic s-dependent factors depend only on the corner 
angles. Details of the global geometry of the scatterer affect only the parameter p, 
which is independent of E and defined implicitly by (5.3). 

Symmetry of solution 

It is well known that the transmission constant 9- remains unchanged, for a given 
scatterer, if the direction of the incident wave is reversed. In  the estimate (5.9), the 
symmetry of the formula is evident, and it remains only to verify that the coefficient q 
has the appropriate behaviour. 

In  the complementary problem, with the direction of the incident wave reversed, 
the outer potential (so and the constant q would be replaced by (s: and q*. Here q5: has 
the given singular behaviour 

(so* - rih1cosh18, as rl+O 
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at the edge (2b, al), and near the other edge (0, a)  we have 

4: N p* + q*rA cos A 8  as Y+ 0, 

603 

this being the formula defining q*. In  order to verify the required symmetry condition, 
q = q*, apply Green’s formula to q5,, and q5: in the region outside the scatterer, excluding 
the singular points (2b, al) and (0, a) by small circular arcs. Because of the homogeneous 
boundary conditions associated with $,, and $:, the only contributions come from the 
small arcs, whence it is found that q - q* = 0, as required. 

Appendix. Solution of the outer potential 
The method of conformal transformation is used here to solve for the potential q50 

defined by (2 .2) - (2 .5) .  Using the complex variables z = z + i y  and 6 = E+iq, our 
starting point is the Schwarz-Christoffel transformation 

z = b + i a + h S o  5 (-) t 2 - 1  t dt 
t 2  - g 2  

with cuts in the lower half { plane, where the square roots are positive when t is real 
and greater than g ( >  1) .  The real constants g and h are to be chosen such that the 
fluid region is mapped on to the upper half 6 plane and the points z = 0, ia, 2b + ia and 
2b are mapped on to the respective points g = -9,  - 1, + 1 and + g .  Thus g and h are 
defined implicitly, in terms of a and b, by the relations 

These integrals can be reduced to elliptic integrals K and E (see Gradshteyn & 
Rhyzhik 1965, for example) by the respective substitutions t = sin8 and 

t = (92 - (92 - 1) sin2 @>t. 
Thus 

b/(gh) = E(P) -P’2K(P),  a/(gh) = E(P’) -P2K(P’), (A 3) 

where p = q g ,  p’ = (l-p2)4.  (A 4) 

Now the potential q50 has to vanish on the free surface (hence on the surface [ = 6, 
[El > g )  while it has zero normal derivative on the scatterer ([ = E,  161 < 9) .  From (2 .5 )  
the singular behaviour near z = ia (6 = - 1 )  is given by 

q50 N -Re (z-ia)-Q 

- - (9 (g2-  1)/8h2})Re ({+ 1)-1 

from the transformation (A 1 )  near z = ia. The solution in terms of 6 is therefore seen 
to be 

which is formally exact, although 6, g and h are given only implicitly in terms of 
and b by (A 1)-(A 3 ) .  
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Our primary interest is to find the constant q that is related to the behaviour of g$, 
[formula (2 .6 ) ]  near x = 2b+ia ,  where 

6 -  1 N {9(g2 - l)!z/Sh2}* (z - ia - 2b)f e*zn. (A 6) 

It follows from (A 5 )  and (2 .6)  that q is given exactly by 

q = &(3/h)$ (g2 + 1) (g2 - I)-*, 

with g and h defined by (A 3) .  

equation 

which does not seem to be soluble for general values of a / b .  Equation (A 8 )  can be 
simplified in a few special cases, as is now shown. If a = b, we have ,LA = p‘ = 1/42, 
thus g = 212 and h is then given by (A 3). The elliptic integrals can be expressed in terms 
of I?(&) (Gradshteyn & Rhyzik 1965) to get 

On eliminating h from (A 3 ) ,  we find that g = l / p  is the solution of the transcendental 

a{E(P) -Pf2K(P) )  = b{E(Pf) -P2WPf)L (A 8) 

Kence 
h = a2-4n-t{r(f))2,  

If b < a, then p-f 0 and the elliptic integrals in (A 8) simplify to give 

Thus 
g2 - fnalb, h2 - 4abln. 

q N &(3n/4b)* as b/a+ 0.  

Finally, if a 6 b then 111’ + 0 and we have 
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